Cyclic AMP-dependent protein kinase type I is involved in hypersensitivity of human breast cells to topoisomerase II inhibitors.
نویسندگان
چکیده
Topoisomerase II (Topo II) is an essential enzyme that catalyzes the breakage of double-strand DNA and is the target of several effective anticancer drugs, including the epipodophyllotoxins. The regulatory subunits of the cyclic AMP-dependent protein kinase are differentially expressed in normal and cancer cells. The RIalpha subunit is overexpressed in cells transformed by transforming growth factor-alpha (TGF-alpha) or Ha-ras oncogene. It has been shown that murine cells transformed by Ha-ras become hypersensitive to Topo II-targeting anticancer drugs. In this report we have tested whether any correlation exists between the expression of RIalpha protein and cellular sensitivity of Topo II-targeting drugs. Normal human breast MCF-10A cells and their derivatives overexpressing TGF-alpha, Ha-ras, or the different protein kinase subunits were treated with either Topo II inhibitors, such as etoposide, teniposide, or amsacrine, or with drugs which act independently of Topo II, such as bleomycin. Here we show that MCF-10A TGF-alpha and MCF-10A Ha-ras cells overexpress the RIalpha protein and become hypersensitive to epypodophyllotoxins and amsacrine but not to bleomycin. Direct introduction of the RIalpha gene into MCF-10A induces hypersensitivity to Topo II inhibitor drugs. In contrast, the overexpression of the other protein kinase subunits, RIIbeta or Calpha, does not modify the drug sensitivity of MCF-10A cells. No differences in the mRNA/protein content or in the activity of Topo II were found between hypersensitive cells and parental MCF-10A cells, suggesting that RIalpha may influence drug sensitivity via modulation of events downstream of the Topo II-DNA cleavable complex.
منابع مشابه
Design, Synthesis and Cytotoxicity Evaluation of New 2-Aryl-5,6-Dihydropyrrolo[2, 1-a]Isoquinoline Derivatives as Topoisomerase Inhibitors
Two set of 2-aryl-5,6-dihydropyrrolo[2,1-a] isoquinolines were designed and synthesized to evaluate their biological activities as topoisomerase inhibitors. Cytotoxic activity of the synthesized compounds 4a-e and 7a-d was assessed against several human cancer cell lines, including MCF-7 (breast cancer cell), HepG2 (liver hepatocellular cells), A549 (adenocarcinomic human alveolar basal epithel...
متن کاملProtein kinase C phosphorylates topoisomerase II : Topoisomerase activation and its possible role in phorbol ester - induced differentiation of HL - 60 cells ( gene expression / cell cycle / tumor promoter / calmodulin ) NAJi SAHYOUN
DNA topoisomerase II from Drosophila was phosphorylated effectively by protein kinase C. With a Km of about 100 nM, the reaction was rapid, occurring at 40C as well as at 30'C and requiring as little as 0.6 ng of the protein kinase per 170 ng of topoisomerase. About 0.85 mol of phosphate could be incorporated per mol of topoisomerase II, with phosphoserine as the only phospho amino acid produce...
متن کاملDesign, Synthesis and Cytotoxicity Evaluation of New 2-Aryl-5,6-Dihydropyrrolo[2, 1-a]Isoquinoline Derivatives as Topoisomerase Inhibitors
Two set of 2-aryl-5,6-dihydropyrrolo[2,1-a] isoquinolines were designed and synthesized to evaluate their biological activities as topoisomerase inhibitors. Cytotoxic activity of the synthesized compounds 4a-e and 7a-d was assessed against several human cancer cell lines, including MCF-7 (breast cancer cell), HepG2 (liver hepatocellular cells), A549 (adenocarcinomic human alveolar basal epithel...
متن کاملExpression of Anaplastic Lymphoma Kinase Protein in Human Breast Cancer
Background & Objectives: Anaplastic lymphoma Kinase (ALK) is a receptor tyrosine kinase involved in the genesis of several human cancers. ALK was initially identified because of its involvement in anaplastic large cell lymphoma (ALCL). ALK is believed to foster tumorigenesis following activation by autocrine and/or paracrine growth loops. Studies reveal that the presence of anti-ALK antibodies ...
متن کاملActivation of calcium/calmodulin-dependent kinase II following bovine rotavirus enterotoxin NSP4 expression
Objective(s): The rotavirus nonstructural protein 4 (NSP4) is responsible for the increase in cytoplasmic calcium concentration through a phospholipase C-dependent and phospholipase C-independent pathways in infected cells. It is shown that increasing of intracellular calcium concentration in rotavirus infected cells is associated with the activation of some members of protein kinases family su...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Clinical cancer research : an official journal of the American Association for Cancer Research
دوره 1 1 شماره
صفحات -
تاریخ انتشار 1995